NAG Toolbox for MATLAB

g02by

1 Purpose

g02by computes a partial correlation/variance-covariance matrix from a correlation or variance-covariance matrix computed by g02bx.

2 Syntax

$$[p, ifail] = g02by(ny, nx, isz, r, 'm', m)$$

3 Description

Partial correlation can be used to explore the association between pairs of random variables in the presence of other variables. For three variables, y_1 , y_2 and x_3 , the partial correlation coefficient between y_1 and y_2 given x_3 is computed as:

$$\frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}},$$

where r_{ij} is the product-moment correlation coefficient between variables with subscripts i and j. The partial correlation coefficient is a measure of the linear association between y_1 and y_2 having eliminated the effect due to both y_1 and y_2 being linearly associated with x_3 . That is, it is a measure of association between y_1 and y_2 conditional upon fixed values of x_3 . Like the full correlation coefficients the partial correlation coefficient takes a value in the range (-1,1) with the value 0 indicating no association.

In general, let a set of variables be partitioned into two groups Y and X with n_y variables in Y and n_x variables in X and let the variance-covariance matrix of all $n_y + n_x$ variables be partitioned into,

$$\begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{bmatrix}.$$

The the variance-covariance of Y conditional on fixed values of the X variables is given by:

$$\Sigma_{y|x} = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}.$$

The partial correlation matrix is then computed by standardizing $\Sigma_{v|x}$

$$\operatorname{diag}\left(\varSigma_{\boldsymbol{y}|\boldsymbol{x}}\right)^{-\frac{1}{2}} \varSigma_{\boldsymbol{y}|\boldsymbol{x}} \operatorname{diag}\left(\varSigma_{\boldsymbol{y}|\boldsymbol{x}}\right)^{-\frac{1}{2}}.$$

To test the hypothesis that a partial correlation is zero under the assumption that the data has an approximately Normal distribution a test similar to the test for the full correlation coefficient can be used. If r is the computed partial correlation coefficient then the appropriate t statistic is

$$r\sqrt{\frac{n-n_x-2}{1-r^2}},$$

which has approximately a Student's t-distribution with $n - n_x - 2$ degrees of freedom, where n is the number of observations from which the full correlation coefficients were computed.

4 References

Krzanowski W J 1990 Principles of Multivariate Analysis Oxford University Press

Morrison D F 1967 Multivariate Statistical Methods McGraw-Hill

Osborn J F 1979 Statistical Exercises in Medical Research Blackwell

Snedecor G W and Cochran W G 1967 Statistical Methods Iowa State University Press

[NP3663/21] g02by.1

g02by NAG Toolbox Manual

5 Parameters

5.1 Compulsory Input Parameters

1: ny - int32 scalar

the number of Y variables, n_y , for which partial correlation coefficients are to be computed.

Constraint: $\mathbf{ny} \geq 2$.

2: nx - int32 scalar

The number of X variables, n_x , which are to be considered as fixed.

Constraints:

$$\mathbf{nx} \ge 1; \\
\mathbf{ny} + \mathbf{nx} \le \mathbf{m}.$$

3: isz(m) - int32 array

Indicates which variables belong to set X and Y.

```
\mathbf{isz}(i) < 0
```

The *i*th variable is a Y variable, for $i = 1, 2, ..., \mathbf{m}$.

$$\mathbf{isz}(i) > 0$$

The *i*th variable is a *X* variable.

$$\mathbf{isz}(i) = 0$$

The *i*th variable is not included in the computations.

Constraints:

```
exactly ny elements of isz must be < 0; exactly nx elements of isz must be > 0.
```

4: r(ldr,m) - double array

ldr, the first dimension of the array, must be at least m.

The variance-covariance or correlation matrix for the \mathbf{m} variables as given by g02bx. Only the upper triangle need be given.

Note: the matrix must be a full rank variance-covariance or correlation matrix and so be positive-definite. This condition is not directly checked by the function.

5.2 Optional Input Parameters

1: m - int32 scalar

Default: The dimension of the arrays **isz**, \mathbf{r} . (An error is raised if these dimensions are not equal.) the number of variables in the variance-covariance/correlation matrix given in \mathbf{r} .

Constraint: $\mathbf{m} \geq 3$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldr, ldp, wk

g02by.2 [NP3663/21]

5.4 Output Parameters

1: p(ldp,ny) - double array

The strict upper triangle of **p** contains the strict upper triangular part of the n_y by n_y partial correlation matrix. The lower triangle contains the lower triangle of the n_y by n_y partial variance-covariance matrix if the matrix given in **r** is a variance-covariance matrix. If the matrix given in **r** is a correlation matrix then the variance-covariance matrix is for standardized variables.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

```
On entry, m < 3,

or ny < 2,

or nx < 1,

or ny + nx > m,

or ldr < m,

or ldp < ny.
```

ifail = 2

```
On entry, there are not exactly \mathbf{n}\mathbf{y} elements of \mathbf{i}\mathbf{s}\mathbf{z} < 0, or there are not exactly \mathbf{n}\mathbf{x} elements of \mathbf{i}\mathbf{s}\mathbf{z} > 0.
```

ifail = 3

On entry, the variance-covariance/correlation matrix of the X variables, Σ_{xx} , is not of full rank. Try removing some of the X variables by setting the appropriate element of $\mathbf{isz} = 0$.

ifail = 4

Either a diagonal element of the partial variance-covariance matrix, $\Sigma_{y|x}$, is zero and/or a computed partial correlation coefficient is greater than one. Both indicate that the matrix input in \mathbf{r} was not positive-definite.

7 Accuracy

g02by computes the partial variance-covariance matrix, $\Sigma_{y|x}$, by computing the Cholesky factorization of Σ_{xx} . If Σ_{xx} is not of full rank the computation will fail. For a statement on the accuracy of the Cholesky factorization see f07gd.

8 Further Comments

Models that represent the linear associations given by partial correlations can be fitted using the multiple regression function g02da.

9 Example

```
ny = int32(2);
nx = int32(1);
isz = [int32(-1);
    int32(-1);
```

[NP3663/21] g02by.3

g02by NAG Toolbox Manual

g02by.4 (last) [NP3663/21]